UTILIZING “BRIDGE DESIGN” FOR SHORED CONSTRUCTION AND ACCELERATED BRIDGE CONSTRUCTION IN NEW YORK STATE

Brenda Crudele, P.E.
Structures Design Bureau, NYSDOT

NEW YORK STATE DEPARTMENT OF TRANSPORTATION
Main Office Structures
Agenda

- What is Shored Construction?
- Designing with BrD for Shored Construction
- Case Studies
 - I81 over Preble Road
 - I190 over Buffalo Avenue
What is Shored Construction?

Non-Composite Section

Composite Section
Areas of Concern with Shored Construction

- Ability to Replace the Deck in the Future
- Required Camber for Shored Construction (Cast the barrier as shored or unshored?)
- “Previous” Lack of Software for Shored Construction
Utilizing BrD for Shored Construction

BrD Version 6.5 and Previous Versions

• The Girder and Deck loads are hard coded into the program as a DC1/Non-Composite Loads

• To “fake” the program into having the girder as a DC2 load, you need to unload the girder weight as a DC1/Non-composite and then reload it as a DC2/Composite load

• Sounds simple enough, but becomes a bookkeeping problem.
For un-shored construction design, the load cases are as follows:

<table>
<thead>
<tr>
<th>Load Case Name</th>
<th>Description</th>
<th>Stage</th>
<th>Type</th>
<th>Time* (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC1</td>
<td>DC acting on non-composite section</td>
<td>Non-composite (Stage 1)</td>
<td>D,DC</td>
<td></td>
</tr>
<tr>
<td>DC2</td>
<td>DC acting on long-term composite section</td>
<td>Composite (long term) (Stage 2)</td>
<td>D,DC</td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td>DW acting on long-term composite section</td>
<td>Composite (long term) (Stage 2)</td>
<td>D,DW</td>
<td></td>
</tr>
<tr>
<td>SIP Forms</td>
<td>Weight due to stay-in-place forms</td>
<td>Non-composite (Stage 1)</td>
<td>D,DC</td>
<td></td>
</tr>
<tr>
<td>DIAPH</td>
<td>DC acting on noncomposite</td>
<td>Non-composite (Stage 1)</td>
<td>D,DC</td>
<td></td>
</tr>
</tbody>
</table>
For shored construction design, the load cases are as follows:

<table>
<thead>
<tr>
<th>Load Case Name</th>
<th>Description</th>
<th>Stage</th>
<th>Type(s)</th>
<th>Time* (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Slope Barrier</td>
<td>Fascia Barrier, Single Slope</td>
<td>Composite (long term) (Stage 2)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>Barrier load on fascia units</td>
<td>Barrier load differential on fascia unit girders</td>
<td>Composite (long term) (Stage 2)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>non-comp girder load</td>
<td>non-comp girder load</td>
<td>Non-composite (Stage 1)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>non-comp slab load</td>
<td>non-comp slab load</td>
<td>Non-composite (Stage 1)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>non-comp diaphragm loads</td>
<td>non-comp diaphragm loads</td>
<td>Non-composite (Stage 1)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>non-comp haunch load</td>
<td>non-comp haunch load</td>
<td>Non-composite (Stage 1)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>comp diaphragm loads</td>
<td>comp diaphragm loads</td>
<td>Composite (long term) (Stage 2)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>DC1</td>
<td>DC acting on non-composite section</td>
<td>Non-composite (Stage 1)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>DC2</td>
<td>DC acting on long-term composite section</td>
<td>Composite (long term) (Stage 2)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>Int barrier load differentials</td>
<td>Barrier load differentials, interior unit girders</td>
<td>Composite (long term) (Stage 2)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>Comp deck slab loads</td>
<td>Comp deck slab loads</td>
<td>Composite (long term) (Stage 2)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>comp haunch loads</td>
<td>comp haunch loads</td>
<td>Composite (long term) (Stage 2)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>comp girder load</td>
<td>girder self weight comp</td>
<td>Composite (long term) (Stage 2)</td>
<td>D, DC</td>
<td></td>
</tr>
<tr>
<td>fws</td>
<td>future wearing surface</td>
<td>Composite (long term) (Stage 2)</td>
<td>D, DW</td>
<td></td>
</tr>
</tbody>
</table>
Girder and Deck loads need to be

Unloaded as non-composite

Reloaded as composite
BrD Version 6.6

- The Girder and Deck loads can be defined as either Composite or Non-Composite Loads

- "Faking" the program is no longer necessary

- Bookkeeping returns to normal
For un-shored construction design, the default is “Engine Assigned”

For shored construction design, The user can set the self load to DC2
Utilizing BrD for Shored Construction

BrD Version 6.6 – Under Typical Section

For un-shored construction design, the default is “Engine Assigned”

For shored construction design, the user can set the deck load to DC2
Case Study: I81 over Preble Road

Bridge Location - South of Syracuse on Interstate 81
Existing Bridge Information

- Two Bridges – I81 NB and I81 SB
- Built in 1966 (46 year old in 2012)
- Three Simple Spans: 39’ – 46’ – 39’
- Bridge Width – 35’-4”
Project Overview

April 27th, 2012 - NB Bridge was hit by Tractor Trailer with Over Height Backhoe
April 28th, 2012 – Support Columns Installed

Repair is deemed temporary – Bridge needs to be replaced.
New Bridge Information

- NB Bridge utilized a crossover for MPT – 10 day closure
- SB Bridge utilized staged construction – 14 day closure
- Span Length – 75’
- Bridge Width – 43’

Designer: NYSDOT - Office of Structures
Contractor: Slate Hill Constructors, Warners, NY
Fabricator: Fort Miller of Schuylerville, NY
Project Cost $7.775 M (Two Bridges)
Vertical Staging

• Construct Abutments Underneath Existing Bridge (Bridge is still open to traffic.)

• Soil Nail Wall is Utilized for Excavation Support

• Allows for a Short Closure Window on the Interstate
Soil Nail Wall
Footing Pour
Vertical Stage Complete
Modular Deck Beams

PROPOSED BRIDGE SECTION
Precast Semi-Integral Abutments

• Eliminates Joints at Abutments
• Reduces Construction Time with Precast Backwall
• Easier Shipping and Handling with use of Horizontal UHPC Joints in the Precast Backwall
Semi-Integral Abutment – As Fabricated
Semi-Integral Abutment – As Fabricated

~21 ft

7 in
Fabrication
Superstructure Construction
Finished Bridge
Case Study: I-190 over Buffalo Ave. (Niagara Falls, NY on Interstate 190)
I-190 over Buffalo Ave – Niagara Falls, NY

• Vertical Staging Utilized

• Semi-Integral Abutment Utilized to Accelerate Construction Schedule

• **3 Day Closure (midnight Thursday to midnight on Sunday)**

• Accelerated Concrete used for Closure Pours instead of UHPC

• Modular Deck Beam Constructed in a Yard one mile from Bridge Location Instead of Fabrication Plant.
I-190 over Buffalo Ave

Vertical Staging
I 190 over Buffalo Ave
Fabrication at Yard 1 Mile from Bridge
Video
THANK YOU QUESTIONS?

Brenda Crudele, PE
NYSDOT Structures Design Bureau
Brenda.Crudele@dot.ny.gov